
Cryptography

1 – Secret-key encryption: applying masks

G. Chênevert

September 16, 2019

mailto:gabriel.chenevert@yncrea.fr

Today

Secret-key encryption

One-time pad

Stream ciphers

Secret-key encryption

Recall: a symmetric cipher consists of a pair of encryption/decryption functions

E : K ×M −→ C and D : K × C −→M

Secret-key encryption

Requirements

• Correct decryption : for all k ∈ K and m ∈M,

D(k ,E (k ,m)) = m.

• Perfect secrecy : knowledge of the ciphertext should give an attacker no

information whatsoever about the plaintext, i.e.

P[M = m |C = c] = P[M = m]

with M ∈M and C ∈ C considered as random variables.

Example

Bob: How many hot-dogs do you want?

Alice encrypts m ∈M = {1, 2, 3, 4, 5} by adding to it a large even integer k.

Eve overhears ciphertext 8765239874287635299876874 . . .

Her assessment of the possibilities for m changes: she gained some information.

Before: After:

After

Perfect secrecy

Replaced in practice by semantic security:

no polynomial time algorithm should give any attacker a non-negligible advantage

i.e. there exists no (efficient) ciphertext-only attack

In pratice: negligible means ≤ 1

2128
.

Example with small key space

Suppose |M| = |C| = 21024, |K| = 28.

Attack: given c ∈ C,

• choose k ∈ K randomly,

• output D(k , c).

Non-negligible probability of success!

=⇒ key space should be large (≥ 2128) NB: message space too!

Today

Secret-key encryption

One-time pad

Stream ciphers

The one-time pad

(Miller 1882, Vernam 1917)

Take M = C = K = G any finite abelian group:

Definition E (k ,m) = m + k

D(k , c) = c − k

Example

with G = (Z/26Z)n

cf. LAB0

In practice (from now on)

Use G = (Z/2Z)n

Group law: componentwise addition mod 2

aka bitwise XOR, or ⊕

Example

010011⊕ 111000 = 101011

Notice: for all x we have 	x = x , i.e. x ⊕ x = 0

Binary one-time pad

With M = C = K = (Z/2Z)n:

Definition E (k ,m) = m ⊕ k

D(k , c) = c ⊕ k

Encryption and decryption are the same function!

Example (12 bits)

Alice:

m = 111000111000 = E38

k = 011011010111 = 6D7

c = m ⊕ k = 100011101111 = 8EF

Bob:

c = 100011101111 = 8EF

k = 011011010111 = 6D7

m = c ⊕ k = 111000111000 = E38

Example (128 bits)

OTP is provably secure! (1/2)

Theorem

The one-time pad decrypts correctly.

Proof.

D(k,E (k,m)) = (m ⊕ k)⊕ k

= m ⊕ (k ⊕ k)

= m ⊕ 0

= m.

OTP is provably secure! (2/2)

Theorem (Shannon, 1949)

The one-time pad has perfect secrecy.

Proof.

Assuming K is uniformly distributed and independent from M,

P[M = m, C = c] = P[M = m, K = c ⊕m] =
1

2n
P[M = m],

P[C = c] =
∑
m

P[M = m, C = c] =
1

2n

∑
m

P[M = m] =
1

2n

hence P[M = m |C = c] = P[M = m].

http://netlab.cs.ucla.edu/wiki/files/shannon1949.pdf

Drawbacks

• The key is as long as the message!

But: still allows a transfer in secrecy (from m to k)

• The key should never be reused

For if c1 = m1 ⊕ k and c2 = m2 ⊕ k , then

c1 ⊕ c2 = m1 ⊕m2 !

Which is a serious violation of perfect secrecy.

Today

Secret-key encryption

One-time pad

Stream ciphers

One-time pad

With K =M = C = {0, 1}n:

E (k, x) = D(k , x) = x ⊕ k.

Perfect secrecy, security level n, but:

• key as large as message

• fresh key needed for every message

• malleable: more on that later

Stream ciphers

Idea: make the OTP practical (addressing first drawback)

Definition (binary additive stream cipher)

E (k , x) = D(k , x) = x ⊕ G (k)

with M = C = {0, 1}n, |K| = 2m, m� n and

G : {0, 1}m → {0, 1}n

a cryptographically secure pseudo-random number generator (CSPRNG)

Pseudo-random number generators

Requirements for CSPRNGs

• All PRNGs are eventually periodic

(deterministic stateful functions with a finite number of internal states)

=⇒ certainly want long period

• Most ”standard” PRNGs are easily predictable!

=⇒ related-key attacks on the underlying OTP

Linear congruence generator

Definition

Given seed x0, generates a pseudo-random sequence (xn)∞n=1 with

xn+1 = (axn + b) % p

with a, b fixed constants (integers) and p a prime number.

The knowledge of three consecutive terms is enough to recover a and b!

Hint: the points (xn, xn+1) all lie on the ”line” y ≡
p
ax + b . . .

Example: p = 823, a = 816, b = 635, x0 = 446

In practice: LFSRs

Would like to take p = 2, but not very interesting...

=⇒ instead: output bit is a fixed linear combination of previous output bits

(closely related to polynomial multiplication!)

Linear feedback shift registers

Algebraic interpretation of LFSRs

Choose a degree d irreducible polynomial f (x) over F2

e.g., f (x) = x3 + x + 1, d = 3

and pick a root α of f (somewhere!)

 F2(α) = {a0 + a1α + · · ·+ ad−1α
d−1 | a0, a1, . . . , ad−1 ∈ F2 }

field with 2d elements

Algebraic interpretation of LFSRs

Given x0 ∈ F2(α), define xn+1 := α · xn (and output the new a0)

Period is 2d − 1 if f is primitive (and x0 6= 0)

Can be generalized to work with matrices (famous Mersenne Twister)

Still very much like a linear congruence generator! (with β = 0 ...)

=⇒ use nonlinear combinations of outputs of LSFRs

http://en.wikipedia.org/wiki/Mersenne_twister

Some (in)famous stream ciphers

That use linear combinations of LSFRs:

• CSS

• GSM

• Bluetooth E0

Some weaknesses found:

• RC4 (used in TLS/SSL and WEP)

http://en.wikipedia.org/wiki/Content_Scramble_System
http://en.wikipedia.org/wiki/RC4

Current recommendations

The eSTREAM project (ECRYPT 2008) proposes

• HC-128, Rabbit, Salsa20, SOSEMANUK (software-oriented)

• Grain, MICKEY, Trivium (hardware-oriented)

(all force the PRNG to use a nonce as initial value)

Still need to be careful to seed the CSPRNG with enough entropy: using PID or

timestamps is not a good idea!

=⇒ better use the system entropy pool e.g. /dev/urandom

http://en.wikipedia.org/wiki/Salsa20

Weekly Jupyter lab

In teams of n = nCSI + nCIR + nnew where:

• 2 ≤ n ≤ 4

• nCSI, nCIR, nnew ≤ 2

You are encouraged to come up with a hacker team name for your team.

We will use Jupyter with Python 3: either from a local SageMath (or Anaconda) install

or online on CoCalc.

Get the archive at https://gch.ovh/crypto (submit on Campus by Monday).

https://www.fantasynamegenerators.com/hacker-names.php
https://jupyter.org/install
http://www.sagemath.org/
https://www.anaconda.com/distribution/
www.cocalc.com
https://gch.ovh/crypto

	Secret-key encryption
	One-time pad
	Stream ciphers

